similarity-QA
Madhyamik

সদৃশতা অধ্যায়ের গাণিতিক উদাহরণ

গণিতদশম শ্রেণি – সদৃশতা (পর্ব – ২)

আমরা এর আগের পর্বে সদৃশতার ধারণা ও ঐ অধ্যায়ের উপপাদ্যে নিয়ে আলোচনা করেছি, এই পর্বে আমরা সদৃশতা অধ্যায়ের কিছু অত্যন্ত গুরুত্বপূর্ণ গাণিতিক উদাহরণ বুঝে নেব।

1। প্রমাণ কর যে, ট্রাপিজিয়ামের তির্যক বাহুগুলির মধ্যবিন্দু দুটির সংযোজক সরলরেখাংশ সমান্তরাল বাহুগুলির সমান্তরাল।

ধরি ABCD একটি ট্রাপিজিয়াম, যার AD ও BC বাহু পরস্পর সমান্তরাল। AB ও DC তির্যক বাহু দুটির মধ্যবিন্দু যথাক্রমে E, F।
প্রমাণ করতে হবে যে, EF ∥ AD ও EF ∥ BC
অঙ্কন- BA ও CD কে বর্ধিত করা হল। বর্ধিত BA ও বর্ধিত CD পরস্পর P বিন্দুতে ছেদ করে।


jump magazine smart note book


প্রমাণ- ∆PCB এর AD ∥ BC
থ্যালেসের উপপাদ্য অনুসারে, \frac{PA}{AB}=\frac{PD}{DC}
বা, \frac{PA}{2AE}=\frac{PD}{2DF} [∵ E, F যথাক্রমে AB ও DC এর মধ্যবিন্দু]
বা, \frac{PA}{AE}=\frac{PD}{DF}
∴ ∆PEF এর \frac{PA}{AE}=\frac{PD}{DF}
∴ থ্যালেসের বিপরিীত উপপাদ্য অনুসারে, EF ∥ AD
আবার, ∵ AD ∥ BC ∴ AD ∥ EF ∥ BC
∴ EF ∥ AD ও EF ∥ BC [প্রমাণিত]


দশম শ্রেণির অন্য বিভাগগুলি – বাংলা | English | ইতিহাস | ভূগোল

2। প্রমাণ কর যে, কোনো সমদ্বিবাহু ট্রাপিজিয়ামের বাহু দুটির যে–কোনো একটির সংলগ্ন কোণ দুটি সমান।

ধরি ABCD একটি সমদ্বিবাহু ট্রাপিজিয়াম, যার AD = BC ও AB ∥ DC। DC বাহুর সংলগ্ন দুটি কোণ হল ∠ADC ও ∠BCD।
প্রমাণ করতে হবে যে, ∠ADC = ∠BCD
অঙ্কন- DA ও CB কে বর্ধিত করা হল। বর্ধিত DA ও বর্ধিত CB পরস্পর O বিন্দুতে ছেদ করে।
প্রমাণ- ∆ODC এর AB ∥ DC (প্রদত্ত)
∴ থ্যালেসের উপপাদ্য অনুসারে, \frac{OA}{AD}=\frac{OB}{BC}
বা, \frac{OA}{BC}=\frac{OB}{BC} [∵ AD = BC]
∴ OA = OB
এখন, OD = OA + AD = OB + BC = OC [∵ OA = OB, AD = BC]
∴ OD = OC
∴ ∆ODC এ সমদ্বিবাহু ত্রিভুজ এবং ∆ODC এর ∠ODC = ∠OCD
∴ ∠ADC = ∠BCD [প্রমাণিত]

3। প্রমাণ কর যে, কোনো ত্রিভুজের দুটি বাহুর মধ্যবিন্দুর সংযোজক সরলরেখাংশ তৃতীয় বাহুর সমান্তরাল ও অর্ধেক।

ধরি, ∆ABC এর AB ও AC বাহুর মধ্যবিন্দু যথাক্রমে P ও Q। P, Q যুক্ত করা হল।
প্রমাণ করতে হবে যে, (i) PQ ∥ BC
(ii) PQ = \frac{1}{2} BC
প্রমান- P, Q যথাক্রমে AB ও AC এর মধ্যবিন্দু।
∴ AP = PB, AQ = QC
\frac{AP}{PB}=\frac{AQ}{QC}=1
∴ থ্যালেসের বিপরিীত উপপাদ্য অনুসারে, ∆ABC থেকে পাই PQ ∥ BC [প্রমাণিত]


jump magazine smart note book


আবার, ∆APQ ও ∆ABC এর ∠APQ = ∠ABC [∵ অনুরূপ কোণ],
∠AQP = ∠ACB [∵ অনুরূপ কোণ],
∠PAQ = ∠BAC [একই কোণ]
∴ ∆APQ ও ∆ABC সদৃশকোণী।
∴ ∆APQ ∿ ∆ABC
∴ থ্যালেসের উপপাদ্য অনুসারে,
\frac{AP}{AB}=\frac{AQ}{AC}=\frac{PQ}{BC}
\frac{PQ}{BC}=\frac{AP}{AB}=\frac{AP}{2AP}=\frac{1}{2} [∵ P, AB এর মধ্যবিন্দু]
PQ = \frac{1}{2} BC [প্রমাণিত]


দশম শ্রেণির অন্য বিভাগগুলিগণিত | জীবনবিজ্ঞান | ভৌতবিজ্ঞান

4। কোনো বৃত্তের PQ ও RS দুটি জ্যা বৃত্তের অভ্যন্তরে X বিন্দুতে পরস্পরকে ছেদ করেছে। P, S ও R, Q যুক্ত করে, প্রমাণ কর যে, ∆PXS ও ∆RSQ সদৃশকোণী। এর থেকে প্রমাণ কর যে, PX.XQ = RX.XS.


‘O’ কেন্দ্রীয় বৃত্তের PQ, RS দুটি জ্যা বৃত্তের অভ্যন্তরে পরস্পরকে X বিন্দুতে ছেদ করেছে। P, S ও R, Q যুক্ত করা হল।
অঙ্কন- S, Q যুক্ত করা হল।
প্রমাণ- ∆PXS ও ∆RQX এর মধ্যে,
(i) ∠PXS = ∠RXQ [বিপ্রতীপ কোণ]
(ii) ∠SPX = ∠XRQ [উভয়েই SQ জ্যা এর উপর উৎপন্ন বৃত্তস্থ কোণ]
(iii) ∠PSX = ∠RQX [অবশিষ্ট কোণ]
∴ ∆PSX ∿ ∆RQX
∴ থ্যালেসের উপপাদ্য অনুসারে, \frac{PX}{XQ}=\frac{RX}{XS}
∴ PX : XQ = RX : XS [প্রমাণিত]

5। ΔABC এর ∠A সমকোণ, AD ⊥ BC প্রমাণ কর: \frac{\Delta ABC}{\Delta ACD}=\frac{BC^2}{AC^2}

ΔABC সমকোণী ত্রিভুজ, সমকৌণিক বিন্দু A থেকে অতিভুজ BC এর উপর AD লম্ব।
∴ ΔABC, ΔACD পরস্পর সদৃশ।
আমরা জানি,
দুটি সদৃশ ত্রিভুজের ক্ষেত্রফলের অনুপাত অনুরুপ বাহুর দৈর্ঘ্যের বর্গের অনুপাতের সমান।
∴ ΔABC এর ক্ষেত্রফল/ΔACD এর ক্ষেত্রফল=\frac{BC^2}{AC^2} [∵ BC, AC অনুরুপ বাহু]
\frac{\Delta ABC}{\Delta ACD}=\frac{BC^2}{AC^2} [প্রমাণিত]
সমাপ্ত।


এই লেখাটির সর্বস্বত্ব সংরক্ষিত। বিনা অনুমতিতে এই লেখা, অডিও, ভিডিও বা অন্য ভাবে কোন মাধ্যমে প্রকাশ করলে তার বিরুদ্ধে আইনানুগ ব্যবস্থা নেওয়া হবে।


এই লেখাটি থেকে উপকৃত হলে সবার সাথে শেয়ার করার অনুরোধ রইল।



Join JUMP Magazine Telegram


JumpMagazine.in এর নিয়মিত আপডেট পাওয়ার জন্য –

X_M_18b