thermal expansion
Madhyamik

তাপের প্রভাবে প্রসারণ বা সঙ্কোচন

ভৌতবিজ্ঞানদশম শ্রেনি – অধ্যায়: তাপের ঘটনাসমূহ(প্রথম পর্ব)

আমাদের দৈনন্দিন জীবনে বেশ কিছু ঘটনা আমরা লক্ষ্য করে থাকি যেমন রেল লাইনের কিছুদূর অন্তর একটু করে ফাঁক রাখা হয় অথবা ইলেকট্রিক পোষ্টের মধ্যে তারগুলি কিছুতেই টানটান করে লাগানো হয় না।

examples-of-thermal-expansion

এই সমস্ত ঘটনার কারণ হল তাপ। আসলে তাপ প্রয়োগের ফলে কোন বস্তু প্রসারিত হয় আবার তাপ নিষ্কাশন করলে বস্তু সঙ্কুচিত হয়। বস্তু যে অবস্থাতেই থাকুক না কেন, অর্থাৎ কঠিন, তরল বা গ্যাসীয়, সকল অবস্থার বস্তুর ক্ষেত্রেই উপরোক্ত তাপের প্রভাব সমূহ প্রযোজ্য।

যাইহোক, এখন বিভিন্ন অবস্থার বস্তুতে তাপ প্রয়োগের ফলে কি ভাবে প্রসারণ বা সঙ্কোচন ঘটে বা আলোচিত হবে।

jump magazine plus

তাপ প্রয়োগে কঠিন বস্তুর সঙ্কোচন বা প্রসারণ

সাধারণ ভাবে কঠিন বস্তু আমরা তিন প্রকার আকৃতি বিশিষ্ট দেখে থাকি। এগুলি হল-

(ক) একমাত্রিক – দন্ডাকৃতি

(খ) দ্বিমাত্রিক – উচ্চতাবিহীন বা কেবল ক্ষেত্রফল বিশিষ্ট এবং

(গ) ঘন বস্তু – অর্থাৎ যাদের দৈর্ঘ্য, প্রস্থ ও উচ্চতা তিনটিই বর্তমান।

সুতরাং উপরোক্ত আকৃতি অনুসারে আমরা তিন প্রকারের প্রসারণ পেয়ে থাকি। এরা হল যথাক্রমে –

(১) দৈর্ঘ্য প্রসারণ

(২) ক্ষেত্রফল প্রসারণ

(৩) আয়তন প্রসারণ

উল্লেখ্য প্রসারণ কথাটি সঙ্কুচিত অর্থে এক্ষেত্রে প্রযুক্ত হয়েছে। আসলে প্রসারণ অর্থে প্রসারণ বা সঙ্কোচন উভয়েই প্রযোজ্য।

এখন আমরা একে একে উক্ত প্রকারের প্রসারণগুলি আলোচনা করব।

(১) দৈর্ঘ্য প্রসারণ – ধরা যাক, t1º C উষ্ণতায় কোন বস্তুর দৈর্ঘ্য ছিল l1 , এরপর উষ্ণতা বৃদ্ধির ফলে t1º C পরিবর্তিত হয়ে হয় t2º C এবং দৈর্ঘ্য প্রসারিত হয়ে হয় l2

সুতরাং, দৈর্ঘ্য বৃদ্ধির পরিমাণ = α l1 (t2º C – t1º C)  [এক্ষেত্রে ‘α’ হল একটি ধ্রুবক]

সুতরাং, l2 = l1 + α l1  (t2 – t1) º C

বা, l2 = l1{1 + α (t2 – t1)}

বা, l2 = l1{1 + α ∆t} —– (A)

এই ∆t = (t2 – t1) º C অর্থাৎ উষ্ণতার পরিবর্তন। সমীকরণ (A) তে ধ্রুবক ‘α’ কে বলা হয় দৈর্ঘ্য প্রসারণ গুনাঙ্ক।

উল্লেখ্য, যে যদি এক্ষেত্রে উষ্ণতা হ্রাস পেয়ে t1º C থেকে t2º C তে পৌঁছায় তবে দৈর্ঘ্য সঙ্কোচনের সমীকরণটি হবে:

l2 = l1{1 – α ∆t}—– (A1)

এক্ষেত্রে, ∆t = (t1 – t2) º C

এখন, ক্ষেত্রফল প্রসারণ ও আয়তন প্রসারণ ও দৈর্ঘ্য প্রসারণ পদ্ধতিরই অনুরূপ। ফলে সমীকরণগুলিও প্রায় এক যা নীচে উল্লিখিত হল।


দশম শ্রেণির অন্য বিভাগগুলি – বাংলা | English | ইতিহাস | ভূগোল

(2) ক্ষেত্রফল প্রসারণ/সঙ্কোচন

A2 = A1{1 + β ∆t} —– (B) (প্রসারণ)

বা, A2 = A1{1 – β ∆t} —– (B1) (সংকোচণ)

β = ধ্রুবক = ক্ষেত্রফল প্রসারণ গুণাঙ্ক
jump magazine plus

(৩) আয়তন প্রসারণ/সঙ্কোচন

V2 = V1(1 + γ∆t) —– (C) (প্রসারণ)

বা, V = V1{1 – γ∆t} —– (C1) (সঙ্কোচন)

γ  = ধ্রুবক = ক্ষেত্রফল প্রসারণ গুণাঙ্ক      

এখন A, A1, B, B1, C, C1 প্রত্যেকটি সমীকরণেই একটি করে ধ্রুবক রাশির উপস্থিতি পাচ্ছি। যাদের যথাক্রমে উল্লেখ করা হয়েছে দৈর্ঘ্য প্রসারণ গুণাঙ্ক (α) ক্ষেত্রফল প্রসারণ গুণাঙ্ক (β) ও আয়তন প্রসারন গুণাঙ্ক (γ) হিসাবে।

অর্থাৎ আমরা বলতে পারি যে কোন প্রকার প্রসারণ বা সঙ্কোচনের ক্ষেত্রেই প্রসারণ গুণাঙ্ক নামক ধ্রুবকের উপস্থিতি অনিবার্য।

jump magazine plus

এখন জানা প্রয়োজন প্রসারণ গুনাঙ্ক (coefficient of expansion) কাকে বলে?

এর জন্য আমরা যে কোন এক প্রকার প্রসারণ বা সঙ্কোচনজনিত সমীকরণ যেমন, A বা Al, B বা Bl কিংবা C বা C1 ব্যবহার করব।

ধরা যাক, A সমীকরণটি ব্যবহৃত হল।

[l2 = l1{1 + α ∆t} —– (A)]

এখন, সমীকরণটিকে সাজিয়ে লিখলে পাই-

l2 = l1 + l1α ∆t

বা, \frac{l_{2}-l_{1}}{\Delta t .l_{1}} = \alpha

বা,  \alpha = (\frac{\Delta l}{l_{1}})\frac{1}{\Delta t} [l2 – l1 = ∆t বা দৈর্ঘ্য পরিবর্তন]  —– (D)

এখন এই (D) সমীকরণকে ভাষায় প্রকাশ করলেই দৈর্ঘ্য প্রসারণ গুণাঙ্কের সংজ্ঞা পেতে পারি। অর্থাৎ আমরা বলতে পারি,

‘দৈর্ঘ্য’ প্রসারণ গুণাঙ্ক হল –

প্রতি এক ডিগ্রী সেন্টিগ্রেড উষ্ণতার বৃধি বা হ্রাসের ফলে কোন পদার্থের একক দৈর্ঘ্য যে পরিমাণ দৈর্ঘ্য বা হ্রাস পায় তাকেই ঐ পদার্থের দৈর্ঘ্য প্রসারণ গুণাঙ্ক বলে।

ঠিক একই ভাবে ক্ষেত্রেফল প্রসারন গুণাঙ্কের (বিটা) সমীকরণ হবে:

\beta = \frac{\Delta A}{V_{1}} \frac{1}{\Delta t} —– (E)

যেখানে ∆A হল ∆t উষ্ণতা বৃদ্ধিতে/হ্রাসে ক্ষেত্রফল বৃদ্ধির/হ্রাসের পরিমাণ এবং A1 হল বস্তুর প্রাথমিক ক্ষেত্রফল।

এবং, আয়তন প্রসারণ গুণাঙ্কের (গামা) সমীকরণ হবেঃ

\gamma = \frac{\Delta V}{V_{1}} \frac{1}{\Delta t} —– (F)

এক্ষেত্রেও ∆V হল ∆t উষ্ণতা বৃদ্ধি/হ্রাসে আয়তনের বৃদ্ধি/হ্রাসের পরিমাণ এবং হল প্রাথমিক আয়তন।

সুতরাং E এবং F সমীকরণগুলি থেকে আমরা দৈর্ঘ্য প্রসারণ গুণাঙ্কের সংজ্ঞাও তৈরী করে নিতে পারি।


দশম শ্রেণির অন্য বিভাগগুলিগণিত | জীবন বিজ্ঞান | ভৌতবিজ্ঞান

ক্ষেত্রফল প্রসারন গুণাঙ্কের (coefficient of superficial expansion) সংজ্ঞা

প্রতি এক ডিগ্রী সেন্টিগ্রেড উষ্ণতা বৃদ্ধি বা হ্রাসের ফলে কোন পদার্থের একক ক্ষেত্রফলে যে পরিমাণ ক্ষেত্রফলের হ্রাস বা বৃদ্ধি ঘটে।

আয়তন প্রসারন গুণাঙ্কের (coefficient of volume expansion) সংজ্ঞা 

প্রতি এক ডিগ্রী সেন্টিগ্রেড উষ্ণতা বৃদ্ধি বা হ্রাসের ফলে কোন পদার্থের একক আয়তনে যে পরিমাণ আয়তনের হ্রাস বা বৃদ্ধি ঘটে।

এখন প্রতিটি প্রসারণ গুণাঙ্কের সমীকরণ [D, E ও F] লক্ষ্য করলে দেখা যায় যে প্রতিটির হরের মানে উষ্ণতা উপস্থিত ও বাকি অংশ গুলি একই প্রকার রাশির অনুপাত।

প্রসারন গুণাঙ্কের একক

আগের সমীকরণগুলি দেখে আমরা ধরে নিতে পারি যে সবকটি প্রসারণ গুণাঙ্কের এককই হবে ºC-1। যদি তাপমাত্রা ফারেনহাইটে মাপা হবে তবে এককটি হবে ºF-1 এবং অনুরূপে কেলভিন স্কেলের ক্ষেত্রে হবে ºK-1

পরবর্তী পর্বে আমরা তরলের প্রসারণ নিয়ে আলোচনা করবো।


এই লেখাটির সর্বস্বত্ব সংরক্ষিত। বিনা অনুমতিতে এই লেখা, অডিও, ভিডিও বা অন্য ভাবে কোন মাধ্যমে প্রকাশ করলে তার বিরুদ্ধে আইনানুগ ব্যবস্থা নেওয়া হবে।



Join JUMP Magazine Telegram


JumpMagazine.in এর নিয়মিত আপডেট পাবার জন্য –
Dr. Mrinal Seal
ডঃ মৃণাল শীল সাঁতরাগাছি উচ্চ বিদ্যালয়ের পদার্থবিদ্যার একজন জনপ্রিয় শিক্ষক। পড়াশোনার পাশাপাশি ঘুরে বেড়াতে ও নানান ধরণের নতুন নতুন খাবার খেতেও পছন্দ করেন ডঃ শীল।