bijganitik-songkhyamalar-gosagu-losagu
WB-Class-8

বীজগাণিতিক সংখ্যামালার গ.সা.গু ও ল.সা.গু

শ্রেণি – অষ্টম | বিষয়: গণিত । অধ্যায়: বীজগাণিতিক সংখ্যামালার গ.সা.গু ও ল.সা.গু


আগের পর্বে আমরা বীজগাণিতিক সংখ্যামালার উৎপাদকে বিশ্লেষণ সম্পর্কে জেনেছি। এই পর্বে আমরা বীজগাণিতিক সংখ্যামালার গ.সা.গু ও ল.সা.গু সম্পর্কে আলোচনা করবো।

গ.সা.গু কি?

গ.সা.গু বলতে আমরা জানি গরিষ্ঠ সাধারণ গুণনীয়ক।

ল.সা.গু কি?

ল.সা.গু বলতে আমরা জানি লঘিষ্ঠ সাধারণ গুণিতক।

গুণনীয়ক কাকে বলে?

গুণনীয়ক বলতে আমরা বুঝি যে যে সংখ্যা দ্বারা ঐ নির্দিষ্ট সংখ্যাটিকে ভাগ করা যায়।

গুণিতক কাকে বলে?

গুণিতক বলতে বোঝায়, কোন সংখ্যাকে পর্যায়ক্রমে 1, 2, 3, 4, ……. দ্বারা গুণ করে প্রাপ্ত সংখ্যা।

প্রথমে আমরা 48, 72, 144 এর গ.সা.গু নির্ণয় করব।

সমাধান-

48 = 2 × 2 × 2 × 2 × 3

72 = 2 × 2 × 2 × 3 × 3

144 = 2 × 2 × 2 × 2 × 3 × 3

∴ 48, 72, 144 এর গ.সা.গু হল = 2 × 2 × 2 × 3 = 24 (উত্তর)
jump-magazine-subscription
2) 8p3q, 16p2q2, 12pq4 এই তিনটি বীজগাণিতিক সংখ্যামালার গ.সা.গু নির্ণয় কর।

সমাধান-
8p3q = 2 × 2 × 2 × p × p × p × q
16p2q2 = 2 × 2 × 2 × 2 × p × p × q × q
12pq4 = 2 × 2 × 3 × p × q × q × q × q
[2 × 2 বা 4 হল সাধারণ গুণনীয়ক
p এর সর্বনিম্ন ঘাত p1
q এর সর্বনিম্ন ঘাত q1 যা তিনটি সংখ্যামালাতেই আছে।]
∴ নির্ণেয় গ.সা.গু = 2 × 2 × p × q
= 4pq (উত্তর)

3) (p2 + 2p), (2p4 + 3p3 – 2p2), (2p3 – 3p2 – 14p) ল.সা.গু নির্ণয় কর।

সমাধান-
প্রথম রাশি, (p2 + 2p) = p(p + 2)
দ্বিতীয় রাশি, (2p4 + 3p3 – 2p2)
= p2 (2p2 + 3p – 2)
= p2 (2p2 + 4p – p – 2)
= p2 [(2p(p + 2) – 1(p + 2)]
= p2 (p + 2) (2p – 1)
তৃতীয় রাশি, (2p3 – 3p2 – 14p)
= p (2p2 – 3p – 14)
= p [2p2 + 4p – 7p – 14]
= p [(2p(p + 2) – 7(p + 2)]
= p (p + 2) (2p – 7)
∴ (p2 + 2p), (2p4 + 3p3 – 2p2), (2p3 – 3p2 – 14p) এর সাধারণ উৎপাদক p
বাকি উৎপাদকগুলি হল— p, (p + 2), (2p – 1), (2p – 7)
∴ নির্ণেয় ল.সা.গু p2 (p + 2)(2p – 1)(2p – 7) (উত্তর)

4) 3a2b2c, 12a2b4c2, 9a5b4 এই তিনটি সংখ্যামালার গ.সা.গু নির্ণয় কর।

সমাধান-
3a2b2c = 3 × 1 × a × a × b × b × c
12a2b4c2 = 3 × 2 × 2 × a × a × b × b × b × b × c × c
9a5b4 = 3 × 3 × a × a × a × a × a × b × b × b × b
∴ নির্ণেয় গ.সা.গু = 3 × a × a × b × b
= 3a2b2 (উত্তর)


অষ্টম শ্রেণির অন্য বিভাগগুলি – বাংলা | ইংরেজি | গণিত | বিজ্ঞান

5) (x2 + 3x + 2), (x2 + 4x + 3), (x2 + 5x + 6) সংখ্যামালাগুলির গ.সা.গু নির্ণয় কর।

সমাধান-
প্রথম রাশি, (x2 + 3x + 2)
= x2 + 2x + x + 2
= x(x + 2) + 1(x + 2)
= (x + 2) (x + 1)
দ্বিতীয় রাশি, (x2 + 4x + 3)
= x2 + 3x + x + 2
= x(x + 3) + 1(x + 3)
= (x + 3) (x + 1)
তৃতীয় রাশি, (x2 + 5x + 6)
= x2 + 3x + 2x + 2
= x(x + 3) + 2(x + 3)
= (x + 3) (x + 2)
∴ নির্ণেয় গ.সা.গু 1 (উত্তর)

অধ্যায় সমাপ্ত। পরবর্তী পর্ব → বীজগাণিতিক সংখ্যামালার সরলীকরণ

লেখিকা পরিচিতিঃ

শ্রীরামপুর কলেজের প্রাক্তনী সুরভী ঘোষ গণিতে স্নাতকোত্তর। গণিত চর্চার পাশাপাশি সুরভী বই পড়তে, গান শুনতে এবং গাইতে ভালোবাসেন।



এছাড়া,পড়াশোনা সংক্রান্ত যেকোনো বিষয়ের আলোচনায় সরাসরি অংশগ্রহন করতে যুক্ত হতে পারেন ‘লেখা-পড়া-শোনা’ ফেসবুক গ্রূপে। এই গ্রুপে যুক্ত হতে ক্লিক করুন এখানে।